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Abstract

Randomly selecting all k centers in one batch, k-means algorithm is destined to hit only local optimas and
yield inconsistent results from run to run. In recent years efforts were made to create modified versions of
k-means, focusing on selecting a better set of initial cluster centers, including k-means++ that samples centers
iteratively in k rounds; and k-means|| which samples a few more centers in lesser rounds of iterations. In these
variations, k-means family of algorithms benefited from randomized process in clustering performance, however,
the very first center still remains being randomly selected. We propose a simple modification in selecting the
very first center from dataset, with experiments on synthetic data and real data, we show the effectiveness
comparisons in different randomization methods in clustering.

1 Introduction

Clustering is one of the most important problems in data mining. The objective of clustering is to partition
a population of unlabeled data points in Euclidean space into several groups (called clusters), where points
within the same clusters are more similar to each other than those in different clusters. Over a century, many
algorithms have been proposed to address the problem. However, one simple and classic algorithm, k-means,
remains the most popular clustering algorithm due to its simplicity and efficiency. K-means starts with a set
of randomly chosen initial cluster centers (called centroid), and then repeatly assign each point to its nearest
centroid, and finally update the centroid position based on new assignment. The assignment and update pro-
cess, called Lloyd’s iteration, is repeated until convergence.

Given its simplicity, k-means algorithm suffers from several drawbacks. One of them is the result sensitivity
to centroid initialization. A bad initialization could lead to exponential running time in worst case, and low
quality final assignments which are far away from global optimum. Hence, many researcher have dedicated
their effort to improve the initialization procedure for better clustering results and faster convergence time.

In this report, we review two papers discussing the improvement of the initialization procedure. The first paper
by Arthur and Vassilvitskii[1]’s paper proposed a method named k-means++, which applied a more careful
seeding in the choosing the initial centroids. Their experiments showed such augmentations helped outperform
traditional k-means in both speed and accuracy, and they also proved that k-means++ is O(log k)-competitive
with respect to global optimum theoretically. Based on their results, Bahmani et al. [2] introduced k-means||,
which allowed for parallelization in selecting starting centroids, and only required a logarithmic number of
passes of the whole dataset.

2 Preliminaries

Before digging deep into the summary of three papers, we first introduce the definition of the clustering problem
and mathematical notions that will be used in this report.

Let X = {x1, ..., xn} be a set of data points in the d-dimensional Euclidean space and let k be a positive integer
specifying the number of clusters. Let ||xi − xj || denote the Euclidean distance between xi and xj . For a point
x and a subset Y ⊆ X of points, the distance is defined as d(x, Y ) = miny∈Y ||x− y||. For a subset Y ⊆ X of
points, the centroid is given by

C(Y ) =
1

|Y |
∑
y∈Y

y (1)

Let C = {c1, ..., ck} be a set of points and let Y ⊆ X. We define the cost of Y with respect to C as

φY (C) =
∑
y∈Y

d2(y, C) =
∑
y∈Y

min
i=1,...,k

||y − ci||2 (2)

The objective of k-means clustering is to find a subset C of k centroids that minimizes φX(C)

C = {c1, ..., ck} = arg min
C

φX(C) (3)
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Let C∗ denote the optimal k-means clustering and φ∗ denote the cost of that. It is known that finding C∗ is
NP-hard[3]. And we call a set C of centroids to be an α-approximation to C∗ if φX(C) ≤ αφ∗. Note that the
centroids automatically define the clustering result of X, as the i-th cluster includes all xj ∈ X such that xj
is closer to ci than any other centroids c′i. In the following sections, we will use ci as the centroid of the i-th
cluster, and use Ci to denote the i-th cluster where xj ∈ Ci iff ci = arg minci∈C d(xj , C).

3 Main Content

The original k-means algorithm is simple as discussed in the introduction section.

Algorithm 1 k-means

1: uniformly sample k points c1, ..., ck from X, let C = {c1, ..., ck}
2: repeat
3: for each i ∈ {1, ..., k} do
4: Ci = {xj |ci = arg minci∈C d(xj , C)}
5: end for
6: for each i ∈ {1, ..., k} do
7: ci = 1

|Ci|
∑

x∈Ci
x

8: end for
9: until convergence

As we focus on the improvement on the initialization procedure (step 1), the step 2 to 9 in k-means algorithm,
a.k.a the Lloyd’s process, will be skipped in the following algorithm flow.

3.1 k-means++

Since the clustering result of k-means is vulnerable to bad initialization of centroids, Arthur and Vassilvitskii
proposed a randomized version of centroid initialization, called k-means++, where the centroids are picked
sequentially and new centroids are far away from centroids already chosen. To be specific, the probability of
sampling xj as a new centroid is proportional to its squared distance from the closest centroid that are already
picked, and this is referred as D2 weighting.

Algorithm 2 k-means++ initialization

1: uniformly sample one points c1 from X, let C = {c1}
2: while |C| < k do

3: sample x ∈ X with probability d2(x,C)∑
x∈X d2(x,C)

4: C = C ∪ {x}
5: end while

The paper further proved that if the centroids set C is constructed with k-means++, the expected cost
E[φX(C)] ≤ 8(ln k + 2)φ∗. We provide a brief proof based on two lemma (proof skipped).

Lemma 1 Let A be an arbitrary cluster in C∗, and C = {p} to be a point uniformly sampled from A. Then
E[φA(C)] = 2φ∗A
Lemma 2 Let A be an arbitrary cluster in C∗, and let C be arbitrary set of centroids. If we add one random
point p chosen with D2 weighting, from A to C, then E[φA(C ∪ {p})] ≤ 8φ∗A

Note that Lemma 2 suggests that if we could choose centroids from each cluster in C∗, the overall cost is
constant approximation of φ∗. The next step is bound the total cost to O(log k) in general case by induction.

Lemma 3 Let C be an arbitrary clustering. Choose u > 0 “uncovered” clusters from C∗, and let Xu denote
the set of points in these clusters, and Xc = X − Xu. Suppose we add t ≤ u random centroids to C, chosen
with D2 weighting, let C′ be the resulting clustering and φX(C′) be the cost, Ht be the harmonic sum.

E[φX(C′)] ≤ (φXc(C) + 8φ∗Xu
) · (1 +Ht) +

u− t
u
· φXu(C) (4)

We prove by induction, showing that if the result holds for (t− 1, u) and (t− 1, u− 1), then it holds for (t, u).
The base cases are t = u = 1 and t = 0, u > 0. If t = 0 and u > 0, the result follows from the fact that
1+Ht = u−t

u
= 1. If t = u = 1, we choose a new center from the one uncovered cluster with probability exactly

φXu (C)

φX (C)
. In this case, Lemma 2 guarantees that E[φX(C′)] ≤ φXc(C) + 8φ∗Xu

. Since φC′(X) ≤ φC(X) even if
we choose a centroid from a covered cluster, we have

E[φX(C′)] ≤ φXu(C)

φX(C)
· (φXc (C) + 8φ∗Xu

) +
φXc(C)

φX(C)
· φX(C) ≤ 2φXc(C) + 8φ∗Xu

(5)
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Since 1 +Ht = 2 here, we have shown the lemma holds for both base cases. For the inductive step, we consider
two cases.

Firstly, suppose our first centroid comes from a covered cluster, which happens with probability
φXc (C)

φX (C)
. Note

that the new centroid can only decrease φ. Applying the inductive hypothesis with the same choice of covered
cluster, but with t decreased by one, we have

E[φX(C′)] ≤ φXc(C)

φX(C)
·
(

(φXc(C) + 8φ∗Xu
) · (1 +Ht) +

u− t+ 1

u
· φXu(C)

)
(6)

On the other hand, if the new centroid comes from some uncovered cluster A, which happens with probability
φA(C)
φX (C)

. Let pa denote the probability that we choose a ∈ A as the centroid, and let φA(a) denote the cost.
Applying the inductive hypothesis, after adding A to the covered clusters as well as decreasing both t and u by
1, then we have,

E[φX(C′)] ≤ φA(C)

φX(C)
·
∑
a∈A

pa
(

(φXc(C) + φA(a) + 8φ∗Xu
− 8φ∗A) · (1 +Ht−1) +

u− t
u− 1

· (φXu(C)− φA(a))
)

≤ φA(C)

φX(C)
·
(

(φXc(C) + 8φ∗Xu
) · (1 +Ht−1) +

u− t
u− 1

(φXu(C)− φA(a))
)

(7)

The last inequality comes from the fact that
∑
a∈A paφA(a) ≤ 8φ∗A, which is implied by Lemma 2. Note that

the power mean inequality states that
∑
A⊂Xu

φA(a)2 ≥ 1
u
· φXu(C)2. Therefore, if we sum over all uncovered

clusters A, we could bound the cost to be

φXu(C)

φX(C)
·
(
φXc(C) + 8φ∗Xu

)
· (1 +Ht−1) +

1

φX(C)
· u− t
u− 1

·
(
φXu(C)2 − 1

u
· φXu(C)2

)
=
φXu(C)

φX(C)
·
((

φXc(C) + 8φ∗Xu

)
· (1 +Ht−1) +

u− t
u
· φXu(C)

)
(8)

Combining two cases, we have

E[φX(C′)] ≤
(
φXc(C) + 8φ∗Xu

)
· (1 +Ht−1) +

u− t
u
· φXu(C) +

φXc(C)

φX(C)
· φXu(C)

u

≤
(
φXc(C) + 8φ∗Xu

)
· (1 +Ht−1 +

1

u
) +

u− t
u
· φXu(C) (9)

The inductive step follows from the fact that 1
u
≤ 1

t

Now consider the clustering C after we have completed Step 1. Let A denote the C∗ cluster where we choose
the first centroid. Applying Lemma 3 with t = u = k − 1, with A being the only covered cluster, we have

E[φX(C′)] ≤
(
φA(a) + 8φ∗ − 8φ∗(A)

)
· (1 +Hk−1) ≤ 8(ln k + 2)φ∗ (10)

The last step follows from Lemma 1 and the fact that Hk−1 ≤ 1 + ln k

3.2 k-means||
Even though k-means++ improves the performance of k-means clustering by initializing ”sparse” centroids, the
sequential sampling process requires O(k) pass scan of the full data and thus prohibits parallelization. Hence,
it becomes a great concern when dealing with large volume of data, especially when it is costly or infeasible
to hold all data in one single machine. To tackle the challenge, in stead of sampling one point in each pass,
Bahmani et al. modified the initialization to sample O(k) points in each round and repeated the the process
for approximately O(logn) rounds. Then they reclustered these O(k logn) points into k centroids as the initial
center for Lloyd’s process. The paper named the algorithm as k-means|| and showed that their method allowed
parallelization of the sample process and faster convergence.

The random initialization of k-means++ and the uniform initialization of k-means are like two ends of a
spectrum. k-means selects k centroids uniformly at one single iteration while k-means++ uses k iteration to
choose the centroids and each one is picked according to a non-uniform distribution. K-means|| takes advantage
of both, using a small number of iteration and select more than one points in each iteration non-uniformly.
An oversampling factor l = Θ(k) is used to control the expected number of points sampled in each iteration.
Lastly, a weighted clustering method is adopt to generate the k centroids.
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Algorithm 3 k-means|| initialization

1: uniformly sample one points c1 from X, let C = {c1}
2: φ = φX(C)
3: for O(log φ) times do

4: C ′ ← sample each point x ∈ X independently with probability l·d2(x,C)∑
x∈X d2(x,C)

5: C = C ∪ C ′
6: end for
7: for x ∈ C,ωx = |{xj ∈ X|d2(xj , x) < d2(x,C)}|
8: recluster the weighted points in C into k clusters

The paper also provided a proof that k-means|| can obtain a solution that is O(α)-approximation to C∗ if an
α-approximation algorithm is used in Step 8. The skeleton of the proof is summarized below.

Consider a cluster A in the optimal k-means clustering, denote |A| = T and sort the points in an increasing order
according to their distance to the centroid C(A). Let the ordering be a1, ..., aT . Let qt be the probability that
at is the first point in the ordering chosen by k-means|| and let qT+1 be the probability that no point is sampled
from cluster A. Furthermore, let pt denote the probability of selecting at, by definition, pt = l ·d2(at, C)/φX(C).
Since each point is chosen independently, for any 1 ≤ t ≤ T, qt = pt

∏t−1
j=1(1− pj) and qT+1 = 1−

∑T
j=1 qj .

If at is the first point in A sampled as a new center, we can assign all the points in A to at, or just stick with
the current clustering of A. Let st = min{φA,

∑
a∈A d

2(at, a)}, we have

E[φA(C ∪ C′)] ≤
T∑
t=1

qtst + qT+1φA(C) (11)

For simplicity, here we adopt an assumption that all pt(1 ≤ t ≤ T ) are the same and equal to some value p,
but note the conclusion still holds though requires more work in the proof if pt differs with each other. If all
pt equal, qt = p(1 − p)t−1. Hence the sequence {qt}1≤t≤T is a monotonic decreasing sequence. Further let
s′t =

∑
a∈A d

2(a, at), by the ordering of at, {s′t}1≤t≤T is a monotonic increasing sequence. Therefore,

T∑
t=1

qtst ≤
T∑
t=1

qts
′
t ≤

1

T
(

T∑
t=1

qt ·
T∑
t=1

s′t) (12)

The last inequality follows from applying Chebyshev’s sum inequality on the two monotonic sequence {qt}1≤t≤T
and {s′t}1≤t≤T . Following Lemma 1, 1

T

∑T
t=1 s

′
t = 2φ∗A. Hence,

E[φA(C ∪ C′)] ≤ (1− qT+1)2φ∗A + qT+1φA(C) (13)

The above inequality shows that a fraction of φA is replaced with a constant factor of φ∗A for each optimal
cluster A, and in each iteration of k-means|| initialization. Thus, step 1-6 can obtain a constant approximation
to C∗. If an α-approximation algorithm is used in Step 8, k-means|| can obtain a O(α)-approximation to C∗.

4 Open Problems

We have identified that, in both k-means++ and k-means||, the very first point chosen as center is still from
uniform random distribution. Imagining a point cloud where certain regions are more densely distributed than
other regions, by intuition the probability of forming a better clustering is higher if we choose the first point from
this denser region. Similar ideas were implemented by Karteeka Pavan[4], who proposed a modified algorithm
called SPSS. The first center is chosen to be close to more number of other points in the data set. Different
from k-means++ in which each run would still yield different results, since the first center is selected with a
specific criteria, SPSS yields unique solutions on each dataset, The first chosen point is the highest density
point in the dataset and this solution is claimed to be insensitive to outliers in initialization step due to its first
point is selected in a dense region in the point cloud.

Inspired by the work of Chris Ding[5]: K-means Clustering via Principal Component Analysis, we have the
idea of preprocessing the data using PCA and try to get a better process in selecting the first center, on top of
the original k-means++ algorithm.

We first propose a modified algorithm based on k-means++, focusing on the first point initialization, then
we generalize it to a modified version on top of k-means||. Suppose we have a high dimensional gaussian ball
dataset, we first use PCA to reduce the dataset to only 1 dimension, then we choose the point from original
dataset whose projected center is the median of the the whole set. This method is supported by the intuition
that projected dimension reflect the most variance explained, by segmenting along the single axis, we can tell
apart some cluster information.
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Algorithm 4 Modified k-means++ initialization

1: project original scaled dataset of N dimensions down to 2D subspace
2: randomly generate m windows of predefined size (a constant factor of 2D canvas size)
3: for each 2D point, compute the frequency of inclusion by m windows, take the point with the

highest frequency and find its corresponding c1 from X, let C = {c1}
4: while |C| < k do

5: sample x ∈ X with probability d2(x,C)∑
x∈X d2(x,C)

6: C = C ∪ {x}
7: end while

We have summarized the proposed method in modified k-means++ above, when having projected the dataset
onto low dimensional subspace, we can use month carlo sampling to find the points in densely distributed
regions. As a 2D example below, two random windows were generated, with their spawn locations sampled
from a uniform distribution along 2 axis. We fix the window size to be a constant factor of the total canvas
size to adapt to each dataset. After each window is generated, each encircled point will receive 1 vote. After
repeating m times we compute the accumulated votes for all points and choose the point with the highest vote
as the first centroid. Since it is computationally expensive for pure euclidean based method to find the point
in the densest region, we designed this sampling method to relieve the computation cost.

Figure 1: Monte Carlo computation of dense points

We have also attached out experimental results using this method in the following section. But now we wish to
generalize this idea to k-means||. Considering the process of doing monte carlo sampling in the above process,
apparently it is convertible to a parallel computation frame since each window-voting is independent to each
other. Therefore we only need to spawn up a few windows together and we can finish computing the votes per
point in fewer rounds. Due to time constraint we only implemented the modified version of k-means++ to a
simplified context.

5 Experimental Results

5.1 Datasets

We used 3 types of datasets in evaluating the clustering algorithms: the first set is synthetic data from 15 dimen-
sions of gaussian distributions, each attribute with a random standard deviation picked in a given range. This
first dataset is similar to commonly used synthetic clustering datasets like norm25 and since it corresponds
well with theoretical assumption from kmeans, this will be the key dataset used in evaluation. The second
dataset is a synthetic set by sampling 10 attributes from gaussian distribution and 4 features from predefined
gamma distributions, with the purpose to test the applicability of kmeans family algorithms on datasets with
non-gaussian distribution. The third dataset is UCI cloud data with 10 attributes to perform clustering, with
the purpose of apply clustering algorithms onto real use cases and compare performances between algorithms.

5.2 Results

In this section, we will show our experimental results on the 3 datasets aforementioned. Since the performance
difference between k-means and k-means++, k-means|| has been theoretically and practically proved (we also
provide these experimental results in the appendix), we focus our analysis on our proposed modification in
choosing the first centroid and compare k-means++ and our modified algorithm of k-means++, the results are
shown below.
From the results we have two immediate observations: First thing to note is that the 3 datasets used in our
experiment have different level of clusterability, the family of k-means algorithms are designed to be optimally
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Figure 2: Gaussian data
Figure 3: Gaussian with Gamma
data

Figure 4: UCI cloud data

operated on gaussian distributed dataset and is validated in Figure 2, where our input synthetic data contains
5 clusters. For the mixed dataset where some attributes are sampled from gamma distribution, the family of
k-means algorithm does not give an obvious clustering. We also observe that our proposed modification on the
choice of first centroid will have a slight improvement in WCSS (within-cluster sum of squares) performance.
We applied 1D subspace manipulation on the projected dataset to get the first centroid instead of the 2D
example in last section’s description.

We also did a basic test to compare k-means and k-means++ to show the performance difference, the results are
in the appendix. In order to better view the result of k-means++ and kmeans on dataset, principle component
analysis(PCA) is implemented on the original datasets and the cluster centroids (Figure 5-10). Each algorithm
runs 20 times with pre-determined random states. It is shown that after 10 iterations, kmeans++ nearly
converges on both a real-life dataset and a gaussian distributed dataset, but k-means takes more than 100
iterations to converge.

Figure 5: UCI data - Centroids ini-
tialized

Figure 6: UCI data - Centroids after
10 iterations

Figure 7: UCI data - Centroids after
100 iterations

Figure 8: Gaussian data - Centroids
initialized

Figure 9: Gaussian data - Centroids
after 10 iterations

Figure 10: Gaussian data - Centroids
after 100 iterations

6 Conclusion

In this short review, we have investigated theoretically and practically on the variants of k-means algorithms.
We see the benefits of having a careful selection on the initial set of centroids and proposed an add on step
to choose a better first centroid. We have also practically proved its slight improvement over k-means++
algorithm in the experiments on 3 different datasets.
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Appendix

WCSS comparison between k-means and k-means++ on 3 datasets.

Figure 11: Gaussian data Figure 12: Mixed data Figure 13: UCI cloud data
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