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1 Introduction

Given a set system (V, S), where V = {1, ..., n} is a ground set of n elements and S = {S1, ..., Sm},m ≥ n is
a collection of sets Si ⊆ V,∀i, discrepancy theory is concerned with finding a two-colouring χ : V → {−1, 1}
so that the difference between objects with different colors is small across all the sets in S. More formally, we
want to find a coloring that minimizes maxSi∈S |Σi∈Siχ(i)|, notated disc(S). A simple random coloring gives
O(
√
nlogm) but in a well-known paper, Spencer improved this with a beautiful non-constructive proof using

the pigeonhole principle showing a O(
√
nlog(m/n)) upper bound (Spencer, 1985).

The past decade has seen significant progress, with the first algorithms found to constructively achieve
Spencer’s bound. Lovett and Meka published an algorithm that involved a random walk along a polytope in
Rn (Lovett and Meka, 2015) and soon after, Rothvoss published a stunning algorithm again achieving Spencer’s
bound, but is notable for its simplicity and how it further generalizes the achievement of Lovett and Meka.
(Rothvoss, 2017). The achievements of these papers is what we will survey in this report.

2 Preliminaries

Before discussing the content of the algorithms, we first go over some necessary preliminaries. Let v1, ..., vm ∈ Rn
be indicator vectors corresponding to the sets in S, then we can express the discrepancy of S as maxi∈[m]|〈χ, vi〉|.
We write x ∼ N(0, 1) to denote that x is distributed according to the standard normal distribution, and
x ∼ Nn(0, 1) to denote the n-dimensional standard normal distribution. We will use ‖.‖2 to denote the standard
euclidean norm, and {e1, ..., en} to denote the standard basis for Rn. In the modern context of discrepancy
theory, we can actually allow v1, .., vm to be general vectors with bounded entries (Meka 2014a); but we will
assume ‖vj‖ = 1 ∀j as this normalization does not change the problem (Lovett and Meka, 2015, p.3).

2.1 Lovett and Meka

Let V ⊆ Rn be a subspace, and let {v1, ..., vd} be an orthonormal basis for V. We write G ∼ N(V ) to denote
the standard normal distribution supported on V , so G = G1v1 + ... + Gdvd where each Gi ∼ N(0, 1) and the
Gi’s are independent. This definition of G(V ) is invariant of our choice of basis (Lovett and Meka, 2015, p. 5).
Given two normal distributions X ∼ N(µ1, σ

2
1) and Y ∼ N(µ2, σ

2
2), note that X + Y ∼ N(µ1 + µ2, σ

2
1 ,+σ

2
2).

Claim 1.1: Let V ⊆ Rn be a subspace and G ∼ N(V ). Then ∀u ∈ Rn, 〈G, u〉 ∼ N(0, σ2) where σ2 ≤ ‖u‖22.

Proof: Let {v1, ..., vd} be an orthonormal basis for V. Then 〈G, u〉 = (
∑d
i=1〈vi, u〉 · Gi) ∼ N(0, σ2) where

σ2 =
∑d
i=1(〈vi, u〉)2 ≤ ‖u‖22 �

Claim 1.2: Let V ⊆ Rn be a subspace, G ∼ N(V ), and 〈G, ei〉 ∼ N(0, σ2
i ) (Claim 1.1). Then

∑n
i=1 σ

2
i =

dim(V ).

Proof: Since 〈G, ei〉 ∼ N(0, σ2
i ), E[(〈G, ei〉)2] = σ2

i . Then
∑n
i=1 σ

2
i =

∑n
i=1E[(〈G, ei〉)2] = E[

∑n
i=1〈G, ei〉)2]

= E[‖G‖22] (the inner product with each ei ”pulls” the ith component) =
∑d
i=1 ‖vi‖22E[G2

i ] (orthogonality)
= dim(V ) (recall that each Gi ∼ N(0, 1)). �
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The following is a well known tail-bound for the standard normal distribution:

Claim 1.3: Let X ∼ N(0, 1). Then for any λ > 0, Pr[|G| ≥ λ] ≤ 2exp(−λ2/2). (Mitzenmacher and Upfal,
2017, p.247).

We will also need the following claim, quoted directly from the paper (Lovett and Meka, 2015, p.6).

Claim 1.4: Let X1, ..., XT be random variables. Let Y1, ..., YT be random variables where each Yi is a function
of Xi. Suppose that for all 1 ≤ i ≤ T, x1, ..., xi−1 ∈ R, Yi|(X1 = x1, X2 = x2, ..., Xi−1 = xi−1) is Gaussian with
mean zero and variance at most one (possibly different for each setting of x1, ..., xi−1). Then for any λ > 0,
Pr[|Y1 + ...+ YT | ≥ λ

√
T ] ≤ 2exp(−λ2/2).

2.2 Rothvoss

Here, γn is used to denote the measure of the n-dimensional normal distributionNn(0, 1) with density 1
(2π)n/2

e‖x‖
2
2/2.

So for a set K, γn(K) = Prx∼Nn(0,1)[x ∈ K] that is to say, the measure of a set is the probability a vector
distributed according to the n-dimensional standard normal distribution falls within the set (we refer to these
as Gaussian vectors henceforth). We define the distance between a point and a set as d(x,K) = min{y ∈ K :
||x− y||2} and the neighborhood of a set K as Kδ = {x ∈ Rn : d(x,K) ≤ δ} (all points with distance at most δ
from K, note that K ⊆ Kδ).

Claim 2.1: Let K ⊆ Rn be a measurable set and H be a halfspace so that γn(K) = γn(H). Then for any
δ ≥ 0, γn(Kδ) ≥ γn(Hδ). (The gaussian isoperimetric inequality, Ledoux and Talagrand, 2013, p.17).

Claim 2.2: Let ε > 0. Then for any measurable set K with γn(K) ≥ e−εn, one has γn(K3
√
εn) ≥ 1− e−εn.

Proof: Suppose we have a set K with measure γn(K) ≤ e−εn. Let λ ∈ R be such that the halfspace H =
{x ∈ Rn : x1 ≤ λ} satisfies γn(K) = γn(H). By using the one-tailed version of Claim 1.3, we have that
Prx1∼N(0,1)(x1 ≤ −3

2

√
εn) ≤ exp(− 9

8εn) ≤ e−εn which implies |λ| ≤ 3
2

√
εn and that γn(H3

√
εn) ≤ 1− e−εn. This

implies that if K has measure γn(K) ≥ e−εn, the corresponding halfspace satisfies γn(H3
√
εn) ≥ 1 − e−εn (by

symmetry). By Claim 2.1, we then have that γn(K3
√
εn) ≥ γn(H3

√
εn) ≥ 1− e−εn �.

Intuitively, the point of Claim 2.1 and 2.2 is that for any set whose gaussian measure is not too small, a gaussian
vector will be near the set with good probability. We call a set K convex if ∀x, y ∈ K,λ ∈ [0, 1], λx+(1−λ)y ∈ K.
We call a set K symmetric if x ∈ K ↔ −x ∈ K. Let us call a set of the form {x ∈ Rn : |〈v, x〉| ≤ λ} a strip.
The following claim, from a lemma of Sidak (Sidak, 1967) and Khatri (Kahtri, 1967) says that the intersection
of a set with a strip, does not cause the measure to decrease by much:

Claim 2.3: Let K ⊆ Rn be a symmetric convex body and S ⊆ Rn be a strip. Then γn(K ∩S) ≥ γn(K) · γn(S)

In preparation for a union bound argument later, for some ε ∈ [0, 1
2 ], we want to bound the number of subsets of

n elements of size εn. we present the following combinatorial argument (Mitzenmacher and Upfal, p.272) with
relevant additions.

Claim 2.4: The number of subsets of n elements of size εn ≤ (en
3
2 εlog2( 1

ε )).

Proof:
(
n
εn

)
εεn(1 − ε)(1−ε)n ≤

∑n
k=0 ε

k(1 − ε)n−k ≤ (ε + (1 − ε))n = 1 where the last inequality follows from
the binomial theorem. Noting that log2( 1

ε ) > log2( 1
1−ε ) for ε ∈ [0, 1

2 ], this implies that:(
n

εn

)
≤ ε−εn(1− ε)−(1−ε)n ≤ 2εnlog2( 1

ε ) · 2(1−ε)nlog2( 1
1−ε ) ≤ 2n(εlog2( 1

ε )+(1−ε)log2( 1
1−ε )) ≤ en( 3

2 εlog2( 1
ε ))

�

Lastly, we need the following result concerning optimal solutions to convex functions in convex sets that we
quote directly from the paper (Rothvoss, 2017, p.5). Note that if a function g is strictly convex, g satisfies
g(λx+ (1− λ)y) < λg(x) + (1− λ)g(y) for x, y in g’s domain.

Claim 2.5: Let P,Q ⊆ Rn be convex sets and let g : Rn → R be a strictly convex function. If x∗ optimal for
min{g(x) : x ∈ P ∩Q} and x∗ lies in the interior of Q, then x∗ is also optimal for min{g(x) : x ∈ P}.
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3 Main theorems

In both algorithms the goal is not a full coloring ε ∈ {−1, 1}n, but instead a partial coloring ε ∈ {−1, 0, 1}n where
(a) there is a lower-bound on the number of non-zero entries and (b) the partial coloring has low discrepancy.
We can induce on the remaining colors and if we find a constant fraction of n colors at each step, then in O(logn)
iterations we have a full coloring. Both algorithms achieve this in polynomial time.

3.1 Constructive discrepancy by walking on edges

We first survey the algorithm of Lovett and Meka. Given the set system (V, S), we can rephrase our goal of low
discrepancy in a geometric way, where instead of finding a partial coloring ε so that |〈vj , ε〉| = O(

√
n) ∀j (vj are

the indicator vectors for our set system), we look for lattice points with sufficiently many non-zero entries inside
a symmetric convex set P = {x ∈ Rn : |〈vj , x〉| ≤ ∆, ∀j ∈ [m], |xi| ≤ 1 ∀i ∈ [n]} where ∆ = O(

√
n) (Meka

2014c). The description of the set has two parts; the first ensuring the points inside satisfy our low discrepancy
requirement, while the second ensures the colors are at least in the range [-1, 1]. Specifically, what we need is a
point inside this set with Ω(n) non-zero integral coordinates.

Instead of actually finding such a point, we search for a point far from the origin but still inside the set; the
idea being that such a point will have many coordinates close to {−1, 1}, and we do this via a random walk,
taking small gaussian steps at each iteration. To ensure we remain inside the polytope P , we make use of a
parameter δ; once we become close to either a variable constraint (|xi| ≥ 1 − δ) or a discrepancy constraint
(|〈vj , x〉| ≥ ∆ − δ|), we constrain future steps inside the edge of the polytope we hit (hence the name walking
on ”edges”). Here is the formal statement of their algorithm:

3.1.1 The algorithm

Let (X0 = x0, ..., XT = x) be a series of T steps where X0 is our starting point and XT is the final result
returned. γ is a parameter related to the size of the step we take; set γ > 0, such that δ = O(γ

√
log(nm/γ))

(we will assume δ < 0.1) and let T = K1/γ
2 where K1 = 16/3. Let c1, ..., cm be the discrepancy constraints for

each set. Now, at an intermediate step t, let:

• Cvar
t = {i ∈ [n] : |(Xt−1)i| ≥ 1− δ} be the set of ”nearly hit” variables,

• Cdisc
t = {j ∈ [m] : |〈Xt−1, vj〉| ≥ cj − δ} be the set of ”nearly hit” constraints and

• Vt = {u ∈ Rn : ui = 0 ∀i ∈ Cvar
t 〈u, vj〉 = 0 ∀j ∈ Cdisc

t } be the subspace orthogonal to both.

Then at each step, simply set Xt = Xt−1 + γUt where Ut ∼ N(Vt). We have the following guarantee:

Theorem 1: Let {v1, ..., vm} ∈ Rn be vectors, and x0 ∈ {−1, 1}n be a ”starting point”. Let c1, ..., cm ≥ 0 be
thresholds such that

∑m
j=1 exp(−c2j/16) ≤ n/16. Let δ > 0 be a small approximation parameter. Then there

exists an efficient randomized algorithm which with probability at least 0.1 finds a point x ∈ [−1, 1]n such that:
(i) |xi| ≥ 1− δ for at least n/2 indices i ∈ [n] (there are enough new colors assigned).

(ii) |〈x− x0, vj〉| ≤ cj‖vj‖2 (the discrepancy does not increase by too much).

To prove Theorem 1, our main goals are to show that with probabiliy at least 0.1, (1): all steps remain inside
the polytope and that (2): (XT )i ≥ 1− δ for at least n/2 indices.

3.1.2 All steps remain inside the polytope

Once a variable or discrepancy constraint becomes ”nearly hit” at some time t, drawing the direction we walk
in from the orthogonal subspace ensures that the constraint remains unchanged thereafter. So what remains is
to bound the probability that a constraint is violated at the same time it becomes ”nearly hit”.

Suppose a variable constraint i is violated at time t: since the constraint is not tight at time (t − 1),
|(Xt−1)i| ≤ 1 − δ, but for the constraint to be violated we also have that |(Xt)i| ≥ 1, which implies that
γ|(Ut)i| ≥ δ. Analogously for a discrepancy constraint j, we have that γ|〈Ut, vj〉| ≥ δ =⇒ |〈Ut, vj〉| ≥ δ/γ. We
can similarly express the violation of the variable constraint as an inner product: |〈Ut, ei〉| ≥ δ/γ.
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Let W = {e1, ..., en, v1, ..., vm}. Then the probability at least one constraint is violated at time t is∑
w∈W Pr(|〈Ut, w〉| ≥ δ/γ). By Claim 1.3, we have that Pr(|〈Ut, w〉| ≥ δ/γ) ≤ 2exp(−(δ/γ)2)/2).

Since we set δ = O(γ
√
log(nm/γ)), we can write δ/γ =

√
2Clog(nm/γ) for some constant C. Then using

a union bound over all times t and all n+m vectors in W (bounded above by nm), we have that:

Pr(any constraint is violated at any time t) ≤ T · (nm) · 2exp(−(δ/γ)2)/2) ≤ T · (nm) · 2γC

(nm)C

Noting that T = 16
3γ2 and γ < 1, when C is suff. large: T · (nm) · 2γC

(nm)C
=

32
3 γ

C−2

(nm) ·
1

(nm)C−2 ≤ 1
(nm)C−2

So we conclude that all steps remain inside the polytope with high probability �

3.1.3 Sufficiently many coordinates are close to {−1, 1}

The outline for this part of the argument is as follows: we can show that |Cdisc
t | is generally small. Thus if

dim(Vt) is small, this implies |Cvar
t | is big, which is what we want. Otherwise, if |Cvar

t | is small, then dim(Vt) is
large and we argue this implies ‖Xt‖22 is likely to increase significantly. If Xt remains inside the polytope as its
norm increases, together this implies that more variable constraints are becoming tight and thus |Cvar

t | cannot

remain small for many steps, which completes our proof for Theorem 1. We first show that |Cdisc
t | is small ∀t.

Claim 1.5: E[|Cdisc
T |] < n/4.

Proof: The idea is that we separate constraints into two groups; constraints that easily become tight, and
constraints that do not. Let J = {j : cj ≤ 10δ}. Since

∑m
j=1 exp(−c2j/16) ≤ n/16 and δ < 0.1, we have that:

n/16 ≥
∑
j∈J exp(−c2j/16) ≥ |J |exp(−100δ2/16) ≥ |J |e−1/16 > |J | · 9/10 =⇒ |J | < (10/9)n/16 < 1.2n/16.

Now for j /∈ J : if j ∈ Cdisc
T , then |〈XT −x0, vj〉| ≥ cj−δ > 0.9cj . From the algorithm, XT = x0 +γ(U1, ..., UT ),

thus the previous inequality is equivalent to |〈γU1, vj〉|+ ...+ |〈γUT , vj〉| > 0.9cj . Let Yt = 〈Ut, vj〉. From Claim
1.1, Yt ∼ N(0, σ2), σ2 ≤ 1. We can then rewrite the inequality again as |Y1 + ...+ YT | ≥ 0.9cj/γ. U1, ..., UT are
a sequence of random variables, and each Yt|U1, ..., Ut−1 is Gaussian with mean zero and variance at most one.
Thus by Claim 1.4 (noting again that T = K1/γ

2,K1 = 16/3):

Pr(|Y1 + ...+ YT | ≥ 0.9cj

γ·
√
T
·
√
T ) ≤ 2exp(−(0.9cj)

2/2γ2T ) = 2exp(−(0.9cj)
2/2K) < 2exp(−c2j/16).

By assuming that all constraints in J are hit, and the fact that
∑m
j=1 exp(−c2j/16) ≤ n/16 it follows that:

E[|CdiscT |] ≤ |J |+
∑
j /∈J Pr(j ∈ CdiscT ) ≤ |J |+ 2

∑m
j=1 exp(−c2j/16) ≤ 1.2n/16 + 2n/16 < n/4 �

Claim 1.6: E[||XT ||22] ≤ n.
Proof: We do this by showing E[(XT )2

i ] ≤ 1 ∀i. Conditioning on the first t such that variable i becomes tight:

E[(XT )2
i ] = Pr(i /∈ CvarT )E[(XT )2

i |i /∈ CvarT ] +
∑T
t=1 Pr(i ∈ Cvart \Cvart−1)E[(Xt)

2
i |i ∈ Cvart \Cvart−1]

The support for i in cases where the constraint is not tight is ≤ 1− δ so clearly E[(XT )2
i |i /∈ CvarT ] ≤ 1. On the

other hand, we can upper-bound (Xt)i = (Xt−1) + γ(Ut)i ≤ 1− δ + γ(Ut)i when Xt−1 is not tight. Then

E[(Xt)
2
i |i ∈ Cvart \Cvart−1] ≤ E[((1− δ) + γ(Ut)i)

2] ≤ (1− δ)2 + 2γ(1− δ)E[(Ut)i] + γ2E[(Ut)
2
i ] ≤ 1− δ + γ ≤ 1

Since (Ut)i = 〈Ut, ei〉 ∼ N(0, σ2), σ2 ≤ 1 by Claim 1.1 �

Claim 1.7: E[CvarT ] ≥ 0.56n.
Proof: First we compute the average norm of Xt.
E[‖Xt‖22] = E[‖Xt−1 + γUt‖22] = E[‖Xt−1‖] + γ2E[‖Ut−1‖22) + 2γE[〈Xt−1, Ut〉] = E[‖Xt−1‖22] + γ2E[dim(Vt)]

Here, use the fact that E[‖Ut−1‖22] = E[
∑n
i=1〈Ut−1, ei〉2] =

∑n
i=1E[〈Ut−1, ei〉2] = dim(Vt) by Claim 1.2 and

E[〈Xt−1, Ut〉] = E[E[〈Xt−1, Ut〉|Xt−1]] =
∑
xt−1

∑
i Pr(Xt−1 = xt−1)(xt−1)i · E[(Ut)i|Xt−1 = xt−1] = 0.

Then applying Claim 1.5, we have that:

n ≥ E[‖XT ‖22] ≥ γ2
∑T
t=1E[dim(Vt)] ≥ γ2T · E[dim(VT )] = K1E[dim(VT )] = K1E[(n− |CvarT | − |CdiscT |)]

Then: n ≥ K1n− E[|CvarT |]− E[|CdiscT |], thus E[|CvarT |] ≥ n(1− 3/16)− n/4 (Claim 1.6) > 0.56n �
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3.1.4 Conclusion

We finish with an argument using Markov bounds. Suppose Pr[|CvarT ≥ 0.5n] = α, then: E[|CvarT |] ≤ α · n +
(1−α) · 0.5n = 0.5n+ 0.5αn. α < 0.12 would imply E[|CvarT |] < 0.5n+ 0.06n = 0.56n, contradicting Claim 1.7.
Thus with probability at least 0.12, |CvarT | ≥ 0.56n. Coupled with the fact that all steps are inside the polytope
with probability at least 1/(nm)C−2, the algorithm succeeds with probability at least 0.12−1/(nm)C−2 > 0.1 �

For completeness, we sketch some of the finer technical details we could not cover in depth. We run the algorithm
2logn times, inducing on the remaining ”non-tight” variables at each iteration and appropriately concatenating
partial colorings we find. Choosing 8

√
log(m/n) for the thresholds at each iteration will meet the conditions

and satisfy a O(
√
nlog(m/n)) discrepancy (note that n is decreasing across iterations!). To improve accuracy,

simply run the algorithm multiple times for each set of partial colorings (they recommend O(logn) iterations in
the paper), and randomized rounding is used to find the final full coloring (Lovett and Meka, 2015, p.9).

3.2 Constructive discrepancy minimization for convex sets

3.2.1 The algorithm

Rothvoss takes a similar geometric approach, but his method for finding a good partial coloring is stunningly
simple. Let K be a symmetric convex body. Now, simply generate a random Gaussian vector x∗ ∼ Nn(0, 1),
then compute and return y∗ = argmin{‖x∗ − y‖2 |y ∈ K ∩ [−1, 1]n}. He provides the following guarantee:

Theorem 2: Let 0 < ε ≤ 1
9000 be a constant and let δ = 3

2εlog2( 1
ε ). Suppose that K ⊆ Rn is a symmetric

convex body with γn(K) ≥ e−δn. Choose a random Gaussian vector x∗ ∼ Nn(0, 1) and let y∗ be the point in
K ∩ [−1, 1]n be the point that minimizes ‖x∗− y∗‖2. Then with probability 1− e−Ω(n), y∗ has at least εn many
coordinates i with y∗i ∈ {−1, 1}.

3.2.2 Proof of main theorem

The outline of the argument is as follows: we can show that x∗ is at least Ω(
√
n) away from the hypercube

[−1, 1]n. On the other hand, we can define a set, whose size is related to the number of integral coordinates of
our solution y∗, and has measure inversely proportional to its size, i.e. when this set is large, many coordinates
of y∗ are integral, but the set has small measure. The distance of x∗ to this set is related to the distance of x∗

from K ∩ [−1, 1]n. Thus if this set is too small, its measure is large, and then by the Gaussian isoperimetric
inequality, x∗ will be too near to this set, and by extension be too near to K ∩ [−1, 1]n. This implies the set is
at least of a certain size, ensuring y∗ has Ω(n) integral coordinates.

We begin with the argument showing x∗ is at least Ω(
√
n) away from [−1, 1]n. It can be directly computed

that for a component of x∗, Prxi∼N(0,1)(|xi| ≥ 2) > 1/25. Treating each coordinate as an indicator, we can bound
the number of such coordinates about n/25 with a standard chernoff bound and show that d(x∗, [−1, 1]n) ≥√

n
25 · (2− 1)2 = 1

5 ·
√
n with probability 1− e−Ω(n).

Now we define the set mentioned above. K ∩ [−1, 1]n itself has only a small Gaussian measure, but we can
consider a super-set containing it: K(I∗) := K ∩ {x ∈ Rn : |xi| ≤ 1 ∀i ∈ I∗} where I∗ := I∗(x∗) := {i ∈ [n]
|y∗i ∈ {−1, 1}}. Crucially, we can argue that d(x∗,K ∩ [−1, 1]n) = d(x∗,K(I∗)), by defining P := K(I∗), Q :=
{x ∈ Rn : |xi| ≤ 1 ∀i /∈ I∗}; then K ∩ [−1, 1]n = P ∩Q and since ‖x∗− y‖2 is a strictly convex function, we can
apply Claim 2.5.

Notice that the size of the set I∗ is equal to the number of integral coordinates of our result y∗. Our
guarantee was εn many integral coordinates, thus we want to lower-bound the measure of the set K(I∗) when
|I∗| ≤ εn. K(I∗) is the intersection of K with strips, and we have the following estimate for the measure

of a strip: γn({x ∈ Rn : |xi| ≤ λ}) ≥ 1 − e−λ2/2 (Rothvoss, p.4) . Now noting that our theorem assumed
γn(K) ≥ e−δn and our choice of δ ensures ε ≤ δ, by Claim 2.4:

γn(K(I∗)) ≥ γn(K) ·
∏
i∈I∗ γn({x ∈ Rn : |xi| ≤ 1}) ≥ γn(K) · e−|I∗|/2 ≥ e−δn · e−(εn)/2 ≥ e−2δn

Now by Claim 2.2, γn(K(I∗)) ≥ e−2δn implies γn(K(I∗)3
√

2δn) ≥ 1 − e−2δn. Thus with high probability,

a random Gaussian vector is in a 3
√

2δn < 1
5

√
n neighborhood of K(I∗). However, I∗ as defined above was

dependent on x∗, so now we instead consider all possible subsets of [n] of size ≤ εn. Let B = ∩|I|≤εn(K(I)3
√

2δn),
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so B is the set of points common to all 3
√

2δn neighborhoods for any set K(I) such that |I| ≤ εn. By our choice
of δ and Claim 2.4, there are at most eδn many subsets I such that |I| ≤ εn. Finally with a union-bound:

γn(B) = 1− γn(∪|I|≤εnRn\K(I)3
√

2δn) ≥ 1−
∑
|I|≤εn γn(Rn\K(I)3

√
2δn) ≥ 1− e−δne−2δn ≥ 1− e−δn �

Thus a random Gaussian vector is within 3
√

2δn from all sets K(I), |I| ≤ εn with probability at least 1− e−δn ,
while being 1

5

√
n > 3

√
2δn away from the hypercube with probability at least 1− e−Ωn. This implies that with

high probability, |I∗| > εn �

3.2.3 Conclusion

At this point, we would like to compare this result with the achievement of Lovett and Meka, in addition to
providing an outline for how Theorem 2 can be used to find a good coloring. The main requirement for Theorem
1 is that the thresholds we specify c1, ..., cm ≥ 0 satisfy

∑m
j=1 exp(−c2j/16) ≤ n

16 . However this condition does
not appear to apply to arbitrary convex sets, and in particular, convex sets with large measure may still be
unable to satisfy this condition (Rothvoss, p.2).

On the other hand, Rothvoss’s result applies to any symmetric convex body with sufficiently large measure,
and he shows in his paper (Rothvoss p.7) that a polytope meeting the requirements of Theorem 1 meets the
conditions for Theorem 2. Thus we can view his work as further generalizing the contexts in which we can
minimize discrepancy, in some sense containing Lovett and Meka’s result.

To apply Theorem 2 to find a good coloring, we generate the random Gaussian vector x∗ and compute y1

to find the first partial coloring. Subsequently for t ≥ 2, let U = {x ∈ Rn : xi = 0 if (yt−1)i ∈ {−1, 1}}.
Set the previous yt−1 as the new center and compute yt ∈ (yt−1 + K ∩ U) where (yt−1 + K ∩ U) is the set
{x ∈ K ∩U : yt−1 + x}. Intuitively, Theorem 2 can be extended to allow centers that are not the origin, and it
can be shown that the set K ∩ U has sufficiently large measure (Rothvoss p.8).

Taking the intersection with the subspace U is essentially inducing on the components of yt−1 that are not
integral and since a constant fraction of components become integral at each step, the algorithm finds a full
coloring in O(logn) iterations.

4 The Beck-Fiala Conjecture

To conclude our survey, we consider two of the longstanding open problems in the field, concerning the special
case where each element in our ground set V appears at most t times. The first result in the field is the well
known Beck-Fiala theorem where it was proven that for a set system (V, S) satisfying this condition, we have
disc(S) < 2t − 1 (Beck and Fiala, 1981). A beautiful proof of this fact using simple linear algebra can be
found in the book of Chazelle (Chazelle, 2001, p.10). Beck and Fiala conjectured that the correct bound was
actually O(

√
t) but the best known bound remains at O(

√
tlogn) (Banaszczyk, 1998) given by Banaszczyk using

arguments from convex geometry. This remains a significant open problem in discrepancy theory today.

Interestingly, finding an algorithm that constructively achieves Banaszczyk bounds is also currently an open
problem that is still being actively looked at (Dadush, Garg, Lovett and Nikolov, 2016). Here we will briefly look
at how Lovett and Meka’s algorithm can be applied to achieve the best known constructive bound of O(

√
tlogn).

In the general case, they suggest the thresholds 8
√

log(m/n) for all the ci, but in this particular setting, they
exploit the ”sparseness” of the sets to set lower thresholds.

If each element appears at most t times, it is straightforward to see that for our identity vectors v1, ..., vm,∑m
j=1 ‖vj‖22 ≤ nt. This implies that you have at most n/2r vectors such that ‖vj‖22 ∈ [2rt, 2r+1t]. Then by

picking the thresholds cj = C
√
t/‖vj‖2, and considering these intervals of size 2r, we have that:

∑m
j=1 exp(−c2j/16) =

∑m
j=1 exp(−C2t/16‖vj‖2) <

∑∞
r=0

n·exp(−C2/(16·2r+1))
2r < n/16

When C is large enough. Now each time we apply the algorithm to find a partial coloring, we have that
|〈xt − xt−1, vj〉| < cj‖vj‖2 = C

√
t. Since we expect > n/2 coordinates to be filled each iteration, the algorithm

takes O(logn) iterations and thus the total discrepancy does not exceed O(
√
tlogn) �
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